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KEYNOTE ADDRESS

TEST QUESTIONS

E.J. McCluskey

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory

Stanford University, Stanford, California 94305

The program for FTCS-1 (1971) had 6 paper In 1971 the FTCS test papers were concentrated
sessions and one panel session. The panel session on the question of how to generate (minimum-length)
was on diagnosis and testing. Two of the paper test sets, and several of them presented sequential
sessions involved testing: "Test Generation and circuit test generation ideas. The emphasis has
Diagnosis" and "Fault-Location and Testing." Thus, shifted significantly as evidenced by the present
over one third of the first Symposit was devoted conference having sessions on: "Design for
to testing issues. Testability," "Self-test," and "On-Line

Monitoring." with only one session on *Test
There are 15 paper sessions, two panel Generation." None of the papers appears to be

sessions, and one keynote session at this specifically on sequential circuita although
symposium. Three of the paper sessions - wDesign several address microprocessor testing.
Testability," "Test Generation," and "Self-Test"
are clearly devoted to testing topics. Another Zn the 11 years between the first and the
session, "On-Line Monitoring," is closely related current conference, the complexity of digital logic
and one-half of the papers in the session on "VLSI has grown exponentially. Computer circuits have
Design Issues" relate to testing. Somewhat less become ubiquitous in western society. The
than 30S of this symposi , . is thus test-related, increased complexity has led to the realization
The attention given to testing hasn't changed very that cost-effective automatic test pattern
much from the first to the current TCS Symposium. generation has become impossible for large designs

that do not provide explicit testability-enhancing
Many conferences devoted entirely to testing features. As a result, there is a great deal of

have started since 1971: Cherry 4ill Test interest in developing "Design for Testability"
Conference and Autotestoon are probably the most techniques.
important of these. The conferences on testing
typically cover very practical topics. They are In spite of much research, sequential circuit
organized and attended mainly by industry and test generation is still extremely expensive.
government people. An exception is the annual Adding scan path facilities to a design permits
Design for Testability Workshop, sponsored by the only combinational circuit test generation to be
IEEE Test Technology Committee, which has a well done. This technique Is fast becoming standard in
balanced participation from academia as well as industrial and government designs. As complexity
industry and government. In addition, testing continues to Increase, it is becoming evident that
papers have become common in many other the cost of generating combinational circuit tests
conferences, most notably the Design Automation and applying them with a tester is starting to
Conference. become too expensive. This has produced a great

interest in the design of "Self-testing" circuits.
Clearly the FTCS activity has not provided a

sufficient vehicle to satisfy all of the current Although it is not illustrated by the progrm
interest in testing. This is particularly evident of this conference, another area of current concern
by the fact that the IEEE Computer Society has is the question of the fault coverage obtained by
started another Technical Committee - Test the test technique used. With much denser chips
Technology - whose only topic is testing. Also two phenomena come into play: yield is lower and
another Technical Committee, the Computer Elements the chance of faults that are not adequately
Committee. has now started an Annual Workshop on modeled as single stuck faults increases. These
Testing. For someone like myself who has a major produce a requirement for higher fault coverage
interest in testing it has become necessary to keep than was necessary in the past. The pervasiveness
up with the activities of three technical of digital technology has increased the need for
committees as well as more than three annual some form of fault tolerance. In the test area
conferences. this has caused increased attention to "On-Line

monitoring" as well as increased test quality.



MODIFIED BERGER CODES FOR DETECTION OF UMIDIRECTIONAL ERRORS

Hao Dong

CENTER FOR RELIABLE COMPUTING, COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science
Stanford University, Stanford. California 94305. U.S.A.

ABSTRACT ka[log2 (I.1) ]

Modified Berger codes are defined in this where [a] is the least integer greater than or

paper. They are less expensive than the ordinary equal to a. If I2 k-1 then using 10 or 11 will
Berger codes In terms of the number of check bits result In the same code, and the code is called the
and the cost of checkers. As a trade-off, their Maximal Length Berger Code [Ashjaee 77].
error detection ability is slightly lower, although
these codes can detect most unidirectional errors. Assume nov all the erroneous bits are within

the I information bits. If We use 10 modulo (ml)
or 11 modulo (ml) (l<m<I) as the check symbol,

INTRODUCTION denoted by CI, then all the unidirectional errors
of weight less than or equal to m will be detected

It is seen that some physical defects in LSI by this code, because no such error could change
or VLSI circuits tend to generate unidirectional one codeword to another. In this case
errors. There are several classes of codes, such JX[log2(u+1)3 bits are needed for the check symbol
as i-out-of-n codes, Berger codes, and two-rail
codes, that can be used to detect unidirectional C1. Let Pk (k=O. 1, ...) be the subset of codewords

errors. It has also been proved that Low-Cost AN In which every codeword has an Ilsk. The colun Cl

Codes and Inverse Residue Codes with group length of Table I shows an example of such a code.
mel can detect all unidirectional errors of weight
less than or equal to a [Wkerly 75], EWakerly TO]. Table 1. A coding example for 1z8 and m-7

Berger codes have been proved to be the Subset : Codeword I 10 I CluzO 1 C2

optimal separable codes that detect any 1 example I 1 mod 8 1

unidirectional error [Berger 611 [Frelman 62].
However, in [Freiman 621, the author pointed out PO 00000000 ; 8 000 ; 111

that one could not make a Berger code detect P1 1 00000001 1 7 111 1 000

unidirectional errors of weight less than or equal P2 00000011 6 1 110 1 001

to M by simply cutting down the number of the check P3 1 00000111 1 5 1 101 1 010

bits, where m is an integer less than the number of P4 00001111 1 4 100 1 011

Information bits in a codeword. In this paper, we P5 01 11 2 010 100

will define Modified Berger codes (MB codes) so P6 00111111 2 010 101

that these codes will detect all the unidirectional P7 1 01111111 1 1 001 110

errors of weight less than or equal to m. Then we P8 11111111 1 0 1 000 11

will estimate the actual error detection ability of
these codes. Totally self-checking checkers for MB A problem arises from the fact that the errors

codes are also described. may also change the check bits. For example, an
error may change a codeword in P1 to a codeword in
PO with only 4 erroneous bits (including the three

DEFINITION check bits). As the number J usually is very
small (Clog2 (m+1)3), it is reasonable to use a

A codeword of a Berger code has two parts: second level code to detect any error in the check
information D and check symbol C. Suppose D has I bits. We may use any of the codes mentioned in the
bits and C has k bits. Let I1 and 10 be the number beginning of this paper to encode the check symbol
of l's and the number of 0's, respectively, in the Cl with another check symbol C2. These codes with
I information bits. The check symbol of a codeword check symbol Cl and C2 are called Modified Berger
is the binary number of 10, or the complement (bit codes in this paper and the maximum weight of
by bit) of the binary number of I1. That is errors detected by an 18 code is denoted by m.

C aTable I shows an example of MB codes with mz7. The
C 2 10 or C a (2 -1)-Il. check symbols Cl and C2 in Table 1 form a two-rail

code. In 1B codes, because any unidirectional
We have error in the check bits is detected by the second



coding, either 10 modulo (1.1) or 11 modulo (001) Then the conditional probability that a
can be used directly as the check symbol Cl. It is unidirectional error ooura but is not detected is
clear that the MB code in Table 1 (with check
symbol Cl and C2) can detect any unidirectional Prob (undetected unidirectional error)
error of weight less than or equal to T, and that Prob (any unidirectional error)
this error detection ability is effective 11 10
regardless of the number of information bits in the v i((l) ( ))/n]pa
code.

This number will change from codeword to
codeword, but essentially It should be very small

ERROR COVERAGE for reasonable values of p and a value of a which
is greater then 1. Also this probability will

From the definition of MB codes, we see that decrease exponentially when a increases. The
MB codes actually detect all unidirectional errors reason for this is that the independent error model
except those that affect only the information bits implies less probability for multiple errors.
AND have weight equal to multiples of (0+1). In Although In some cases, such as a combinational
order to get an idea of the effectiveness of MB circuit with fan-out points, the independent error
codes, here we give some estimation by two model does not apply very well, in general. it is
different error models, usually true that an error is less likely to occur

Assume that the check symbol CI is encoded in if it Involves more bits.

two-rail code by the check symbol C2. In this Next we consider another error model. Now we
section we use the following notations: assume that all he unidirectional errors, no

3: the maximum weight of unidirectional matter how many bits they affect, have the same
errors detected by the MB code. probability to occur. Also assume that all the

J: the number of bits in check symbol Cl or codewords have the same likelihood to be the
C2. J*Elog2 (+ml); output. The number of error patterns in a codeword

11: the number of l's in the information is
bits;

10: the number of 0's in the information I J I+ +j IO 
bits; T (1) )

I: the number of information bits, 1:I1+10; i I 1.1

n: the length of a codeword, nI.+2J. a 1 ): (2 T+-1) * (2 ~"-1)
The total number of l's (0's) in a codeword is

I1+J (I0+J). The number of codewords for 11 and 10 is

First, let us consider the independent error I I
model. Under this model, an error on an output 1 (0)
line is independent of the status of the other
outputs. Suppose the probability that an error Let the total number of error patterns be K.
occurs on one output bit is p, and this probability We have
is uniform for every output bit. and qul-p. Then
the probability that a unidirectional error occurs 0
is Ez 0[(2 -1) + (2 )(I*)

Prob (any unidirectional error) I

T(I l )pI nJ 10+4 10+j I n-i z2 F (2 M 11)
2 + (II )P q 1120

The number of undetected errors for each
U (1-q )q (1-q )q codeword is

Sq0+ J qI1+J 2qn I 10-
A n .< (Dl + ( I

np ( p<< ) .O<J(m l)(_11 0 J(M+1M O1

The probability that an undetected Let the total number of undetected errors be
unidirectional error occurs is D. Then

Prob (undetected unidirectional error) 1
2 (~p.lql(l)II (31) 2(.0

.11 21 •.q-(1)02(•() n-l(m)l) D S ( )+ MI
)p q~) +2m +...- (+)j(1+ 1

11,O O<J(• l) <Il O<j(81+)_<1o

10 )•l n-(m l) 10 2(m.l) n-
2

(•+l)ff * ) p q + ) P q + " z I I

11 10 l :2- ~l ~~)TM+)1•)1 m+) j(m,1)) I



The error coverage of an KB *ode for all the In other words, C1 is the complement (bit by bit)

unidirectional errors is 1-D/E. Table 2 shows this of rI modulo (se1). In this case, circuit Ni'

coverage for some MB codes in which Cl and C2 form generates the weight of information part D modulo

a two-rail code. It is seen that when the number (10). We call such a circuit Ni' a modulo weight
of information bits grows, the error coverage tends generator while the ordinary weight generators are
to stay around a fixed figure. This is a big refered to as full weight generators. Circuit NM2
advantage for those applications where the circuits in Fig.2 is a two-rail code checker. The J outputs
have a large number of outputs. For a practical of circuit Ni'. denoted by C1', will then be
circuit, the error patterns that might occur will compared with the check symbol C1 of the codeword
depend on the function and the structure of that by the checker N2'. Because MB codes provide the
circuit. In general, the error coverage of an MB full code space for the two-rail code checker N2'.
code should be somewhere between the two models we the checking circuit CH1 described above is a TSC
analyzed. So we oan say that MB codes will detect checker. The second level coding of Cl and C2 is
most of the unidirectional errors that may occur in checked by circuit C2. C1 and C2 may form either
a circuit. a two-rail code or another Berger code. If Ci and

C2 form a two-rail code, then CH2 is the same as
Table 2. Comparison: Error coverage N2'. When no error occurs, C1 and C2 are a

codeword, so are Cl and C1'. We have C1'uC2, and
MB Codes 1 Berger Codes fif', gag'.

II me1 2J Coverages 1 k Coverage*

16 4 4 93.74% 1 5 1005
32 1 4 93.755 ! 6 100% 041
48 1 4 4 93.755 1 6 100% :
64 14 46 93.75% I 7 100
16 8 6 99.04% 1 5 1005 D-- Nil J----

32 1 8 6 98.54% I 6 1005 :.-- Ni' l1-1 :
48 8 6 98.33% l 6 1005 : I ICI'f
64 1 8 6 98.75 I 7 1005 J : N2' :

Only for unidirectional errors.1

CHECKING CIRCUrTS . ........ °..... ....°.......

A general design procedure for Totally
Self-Checking (TSC) checkers of Berger codes was
presented in EMarouf 78]. The structure of these .----- f,
checkers is shown in Fig.1. In the diagram, <J I CH2 1
circuit N1 is a weight generator which generates C2 _____g_

the weight of the information part D, that is, 11. C
Then the outputs of NI are compared with the check
symbol C by the comparator M2, which is implemented Figure 2. Structure of MB code checkers
as a two-rail code checker. The weight generator
N1 is a network of full adder (FA) and half adder
(HA) modules. The procedures for constructing Conceptually m+l may be any integer, but in
different weight generators are given in [Marouf

78]. This Berger code checker design can be easily the Case that m12 i the circuit implementation
modified for MB code checkers, of the checker will be the simplest. In fact, a

modulo weight generator can be obtained directly
from the corresponding Berger code checker. This

I k is done by keeping only the lowest J bits in each
Information D -4- NI 1-..-+ stage of weight regresentation and removing all the

higher bits in the full weight generator. Fig.3
___ I-.; shows how a full weight generator with 15

k 1M2 I Error Signal information bits can be modified to realize a
Check Symbol C A- • - , modulo weight generator with me+s4 (modulo 4). rn

__ Fig.3. numbers for the full weight generator are
noted in ) if these numbers are different from

Figure 1. Structure of Berger code checkers those of the modulo weight generator. The asterisk
(0) in an adder module indicates that for the

A TSC checker for an NO code consists of two modulo weight generator the adder does not have the
parts as shown in Fig.2. Circuit C1 checks the highest carry output. So, for MB code checkers,
information bits by generating the complement of the Jth bit of these adder modules is simply a
the check symbol C1 (by circuit Ni') and comparing three-input XOR gate instead of a full adder. It
it with CI (by circuit N2'). Assume that check is also seen from Fig.3 that the modulo weight
symbol C1 is defined as generator has less delay time than the full weight

generator since its last adder module is one bit
C1 - (2J-1)-(Il modulo m,1 ). shorter.
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the corresponding low-cost codes or Berger codes in
-: 2 most Coases. Also MB codes can be easily applied to

any number of information bits. Because the number
-: ___ of check bits of an 1B code is independent of the

S .-- (2: 2(3) total number of the information bits, they are
I 2e'- .- suitable for circuits that have a large number of

outputs, such as PLA's. It is also shown in the

:: 2 paper that the totally self-checking checkers for
MB codes are less expensive and have less time

-- ] ___ delay than that for either Berger codes or low-cost
; -T(3); 2(4) residue codes. All these advantages make MB codes

_ 20__A_ very attractive for practical applications.
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CONCLUSION

Modified Berger Codes are defined in this

paper. MB codes can detect all unidirectional
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predefined integer m.1. This error coverage is
greater than low-cost residue codes but less than
Berger codes. MB codes have fewer check bits than



A STATISTICAL LOAD DEPENDENCY MODEL FOR CPU ERRORS AT SLAC

Ravishankar K. lyr and David J. Rossetti

CENTER rOR RELIABLE COMPUTING
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305 U.S.A.

ABSTRACT
Thispaper describes an analysis of CPU errors at The techinquas developed will form an important
the Stanford Linear Accelerator Center Computa- basis upon which analytical models and simulation

tional Facility. The study includes all classes of techniques can subsequently be developed.
temporary and permanent CPU errors. Nearly SS per-
cent of the errors are temporary failures. We find It is the purpose of this paper to report the

a strong load dependency in the errors. The results of our most recent investigations. These
observed tendency is present in three years of load investigations were conducted on the IBM computer
data. This observation is significant because a system at the Stanford Linear Accelerator Center
load-failure relationship found at the CPU level (SLAC) computational facility. An overview of the
must. in our view, be considered fundamental. In SLAC system configuration appears in [Sutner S0].

addition, the fact that most of the errors are Using new techniques to measure both the workload

transients or intermittents. provides new informa- and hardware errors in a large computer center for
tion on these error types with respect to their a period of three years. the following were com-
load dependent behavior. Our analysis procedure, pleted%

used on the SLAC data, has been validated on an
artificially created data base seeded with fail- t. The present study concentrates on CPU errors.

urea. A large majority of these can be olassified as

transient or intermittent.

Kevugsrsi Statistical failure models, workload.
data analysis. 2. Ue have now established a completely new data

base of failures and load which is considerably
superior to our old data base (UNILOG), EButner

SO] in depth, range and integrity. In partiou-
INTRODUCTION lar, it captures a detailed internal view of

the system and unlike UNILOG is automatically
It is woll known that as a system approaches high collected data.
levels of utilization, degradation in performance
occurs (rrrari 78]. An important question is 3. More significantly, the workload and failure
whether increased system activity also results in data were combined in order to match failures
the degradation of system reliability. If this is with workloads at the times of failure.
true, the implications are quite fundamental, since
increased usage would result in an' increased risk 4. The measurements and statistical experiments
of error. Computing systems, which need maximum clearly demonstrate an increased risk of Cpu
reliability at the time of their peak load, would errors due to increased values of workload
require a reevaluation of their reliability projec- variables. Examples are CPU utilization,
tioa. Research on the resolution of this question input/output rate, and interrupt rates.

has been in progress at the Center for Reliable
Computing at Stanford University since 1978. A A representative measurement is illustrated in
lack of understanding of the complex physical Fig. 1, which shows how an increase in the input/
interactions involved preclude analytical modeling output rate can result in higher risk of processor

at this stage. Accordingly, our approach has been errors. The horizontal axis is the workload vari-
to assume no model a priori, but rather start from able; the vertical axis is the risk of error. Mod-

e substantial body of empirical data on system load eling details will be given later in this paper.
and failures. The object of the project is two-

fold:

1. To design and implement statistical experiments Related Research

in an attempt to study the dependence of fail-
ure on load. The failure data for initial studies, (Beaudry 78].

[butner 80] and [lyer 81], came from the operator
2. To develop models for determining any cause-ef- maintained data base called UNILOG. A statistical

fact relationships between workload and fail- analysis of UNILOG failure data was performed in
urea. conjunction with a number of performance measures



from the IBM SMi' data log. In particular, we &ns- expected to respond to conditions which differ from

lyzed hardware and software failures. classified by those for which it was modeled and evaluated. As

component types. The study revealed a strong cor- indicated earlier, our approach has been to start

relation between load and failures, although soft- with a substantial body of real data and examine it

wars failures correlated at a somewhat ucaker level for a real or apparent dependency. In view of our

than hardware. Most importantly, the average over- previous results, we believe that the error process

all system failure rate varied cyclicly over a band which ensues is composed of two separate effects.

of significant width as determined by the daily The first is the (constant) inherent failure rate.

load variations. This is determined through classical reliability

techniques [Shooman 682, taking into consideration

such factors as topology, redundancy etc. The sec-

and is the utilization-induced failure rate. This

rate is dependent upon both the absolute level of
4system utilization and the rate of change of that

level. By an absolute level we mean an obviously

mesurablo level; e.g., CPU utilization, memory

0.010 occupancy, etc. Through the rate of change of uti-
lization we are attempting to measure the rate at

N ~~~whiche transitions occur bowenaiossse
Astates e.g. the transitions of the CPU Into and

out of the busy stats. Although the exact nature
of these effects is not known, some underlying

causes are thought to be as follows:

0.001 () Latent Dscove" Effect: Many failures can

0 50 100 150 200 only be detected when a particular module or sub-

10 system is "exercised.* In other words the system
can be modeled as a load flow graph wherein we have

Figure 1: Risk of error increases with increased path utilization when the load increases.

increasing 1/O rate. Thus, although the failures may not be caused by
increased utilization they are "revealed" by this
factor. The time between the occurrence of failure
and manifestation as a system error has been refer-

Additional substantiation of this result came red to as "error latency' 
E
Shedletsky 73].

from results reported in ECsstilla 80]. where a
constant failure rate model is proposed. In exper- iii) I ratiau : The-e appears to exist a
imenting with data from a DCC system, [Castillo 80] correlation between utilization and reliability.
found a Poisson model to be valid only at specific The more often we exercise information access chan-
hours of the day, for particular load levels. Sub- nels and associated memory locations the greater
sequently, the same authors [Castillo 81] proposed the temperature and increase in fatigue.
the use of a doubly-stochastic Poisson process to
model the cyclic load-failure relationship. The (iil) Noise: A higher utilization tevel results in
model assumes that the instantaneous failure rate increased electronic noise. This can be expected
can be described by a cyclostationary Gaussian pro- to result in a higher error probability.
cess. In [Gunther 80] a novel theoretical model
for an apparent dependency of failure on load. Civ) Synchronization jU Timina Anmalies The
based on a random walk formulation, is described, synchronization or timing anomaly category includes

the failures due to time dependent aspects of the
software and hardware. An error in the access to

The next section motivates the current work and critical regions or an unanticipated sequence of
places our pIeviou2 results in perspective. "Meas- states in an inter-computer communication protocol
urements" discusses the failure and workload mess- are some examples. Dependence upon level of utili-
urements taken and briefly presents the organiza- zation is obvious - as a system approaches full
tion of the data. Subsequent sections describe the capacity, the "relative" timings of events can
analysis procedures and present new results, fluctuate widely. Sequences of events between pro-
Finally, me summarize te important results and cesors can change from those originally antici-
highlight the conclusions that can be drawn from pated as one or more of the CPUs nears saturation.
them. A frequent source of timing anomaly is caused by

implicit assumptions (often totally unintentional)
MOTIVATIOM regarding absolute times between events. In a real

system pushed near 100 percent utilization, timings
A user-oriented real time system is frequently are highly dilated between system components and

absolute synchronization assumptions can be vio-
lated.

The IlM System Management facilities, for col- Our previous studies did provide us with some
lecting accounting and performance data. See insight into the above effects. Ue were, for exam-

Eli 732 for details.



pie. able to see that though the latent discovery The SLAC system. during the period of our study.

mo* an important factor. other effects were indeed consisted of two IBM 370/ibl mainframLes ad an IBM

present. The strong correlations in the pro-noon 360/91 connected in a triplex mode. The data for

period (the m o dclock phenomenon"
)  

Butoer sg0h our study whiv h consisted of three years of meas-
shos that latent discovery is an important factor . urements (i7g. 1g80, nd 1g9), a e frm the two

The continued strong correlation in the afternoon ISMl 370/165 mainframs. 7ho log referred to above

suggst•tha oter ffecs oe sam resntis commonly clled the "EREp" log. from the nv-

sugest ta+ thr efets reals peset.ronmental Recording Editing and Printing program

We mre, howvr. limited by the fct that the used to accumulate and format It for maintenance

failure datewase an external, human-collected vioew (IBM 79. Note that it is significntly more com-
of the system. In order to obtain a loser insight prehensive than UNILOG hch s ssntilly n

into the problem, it max considered necessary to external. human-collocted log.
study the internal error generation process and rrors in IBM 30 systems re classified into

determine its relationship, f any. ith system three major types:

activity. In particular, we decided to concentrate

an CPU errors. Ah important reason for this met 1. M. Errors - In the central processor and star-the fact that little is known regarding the behav- ae
ir of the CPU errors nd their reationshp toge.

load. In addition. a substantial number (95 per- 2. Channel Errors - In 1/0 channels end associated

cent) of the CPU errors, in the period of our interfaces.
study. 3ere found to be "soft" errors. i.e. those
from hich the system recovered. Accordingly, they 3. Outbord rrors - in any device beyond the

come in the general category of transient or inter- channel-control unit interface, i.e. al
mittent errors (defined below). or design errors. errors in 1/0 devices.
Again. relatively little is known regarding the

generation of these soft errors. for each error. whether recoverable or not, the

opersAting system zreates a time-stamped record

We define an intermittent error as one due to a describing the error and providing relevant infor-

component on the verge of failure. The error ill1 a tion on the state of the machine. As an example,
re-occur frequently and eventually become perma- for a CPU error, the state nformation might

nent. It is generally believed that temporary include the contents of all internal registers and
failures are four to five times as frequent as per- diagnostic information collected by the hardware
manent failures [Ball 693. Nearly 90 percent of (such as parity indicators and error flags).
field errors are believed attributable to this

class. Although a few analytical models exist, At SLAC this information fs collected on a daily
they are extremely restrictive and the basic basis and archived for many years. A small sample

assumptions need validation (Savir 77]. Statisti- is presented in Table I.

cal studies on real data are few and far between
[mcConnell 79]. The following section gives a gen- Workload Measuremefl

oral overview of the measurement techniques and

construction of the data base. Since errors in processors occur fairly infre-

quently (on the order of once a day for our meas-

MEA;UREMENTS urements), correlation with workload requires long

term workload figures. Our workload data comes

Error Measurement from two sources: the built-in system utilization

facility, and a software monitor written specifi-
As stated earlier, the present study uses the most cally for this study. They are discussed below.
detailed data from the log maintained by the oper-

ating system as errors are detected by the hardware SM Pats. The operating systems in the proces-
and recorded by the software.. High level system sors measured use IBM's System Management Facili-

behavior, as seen by the computer operator and ties (SMF) for usage accounting. SM was origi-

users, is not directly measured. Instead, there is nally designed to provide accounting information,
much information on harduare errors, both permanent but it has evolved over the years to include more

and non-permanent (transient and intermittent), as general performance measurement information. SmF

they occur in the detailed operation of system com- is discussed exhaustively elsewhere [IlM 73],

ponents. [Butner 80] and will not be detailed here.

TABLE 1. Sample error data ([REP)
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In general. SM? date consists of records giving TAKE I

resource utilization figures for Jobs. files. I/O Impt date for mrkleo vriles.
devices, and a potpourri of statistics gathered and

written on a periodic basis. For this work we use
the type 4 (Step) record, which holds statistics
for each job stop as it comaletes execution. and asgard when generated Contents used
the type I (Wait) record, mritten roughly every 10
minutes. which summarizes global system utilization
during that 10 minute period. With careful pro- step At ed of eh betc Je Acecouting wed jo vae
cessing SMF can provide excellent workload statis- step dats. e.g. CPU tIt. me. of
tics, especially when high resolution results are In@. Mwrey sae.

not needed. mnt Appree. er is leet.l CPU mell time duri preeew-

lng to eleute period.
INTRAC o nitor. To obtain more detailed infor-

mation about transient behavior in the CPU me I Normall every If mutes Contents of four emmative
(but settable) interrupt euenters fert

implemented an interrupt rate monitor, called tsterel, SVC. Preram. IA.
INTRACK. This software monitor consists of two
components: the interrupt counters and the INTRACK
recorder. There are four classes of interrupts in

the Il 370 architecture:
z

Interrupts, Monday, March 2. 1901 (16801)
I. Cxternal (EXT) - Used by the operating system

for clocks and inter-CPU communication.

2. Supervisor Call (SVC) - Caused by any SVC a

instruction. Used for operating system servi- I= -

tea, such as: memory allocation. synchroniza-ye

tion. 1/0, timing. etc. 
"

3. Program (PROG) - Program traps due to arith- R
metic conditions (e.g. division by zero), P

invalid operations, or page faults. A

4. Input/Output (I/0) - From completion of I/O

operations. we Jo

The operating system provides an interrupt han- e

dler for each class of interrupt. A counter field 1 10 to a

and instruction to increment the counter mere added N

at the beginning of each interrupt handler. These
counters start at zero when the system is loaded Figure 2: One day of INTRACK-collected interrupt

and increase monotonically until the system crashes rates.

or is reloaded. The counters have the capacity to
count up to 1011

, 
so overflow is not a problem. In order to determine the load at the time offailure, the S-minute load averages (which ve refer

The INTRACK recorder is a continuously running to as smeared averages) mere merged with the EREP

program that is automatically started every time log. The load at failure us taken to be the load

the operating system is loaded. Table 2 summarizes in a five minute interval prior to the failure to

the sources of data for our workload information, eliminate perturbations from system error recovery

Figure 2 is an example of interrupt rates derived or a system crash. The matching is shown in figure

from the INTRACK counters. 3.

The 2jL Ass

Before the load and e-ror data could be analyzed.

it was necessary to create a coherent data-base Load Prior to Failure

which could be used an input in any subsequent
analysis. This was particularly important for the ( U
workload data since the records came in varying"- Q

formats and types. As a first step we created Time: t t+5 t+10

5-minute time averages for all workload parameters (minutes) %

for the entire period of our study.

C-Average Load in t.t+S

Machine check interrupts are not considered here Figure 3: Merging of Lad and Failure Data

because they are already collected in the EREP
data.
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As a seond step. we also created an hourly smeared A careful examination reveal. much information
date base. The creation of these date bases neces- about the types of processor errors and their rele-
sitated complex processing in order to minimize the tive severity. For example, external damage (EOMG)
loss of information which invariably accompanies occurred in a large number of patterns (42%). and
such procedures. The softare system developed for the table indicates that in almost all of those
this purpose is described in [lossetti 1]. The cases no other damage was detected in the CPU.
system. which Is highly interactive. allows offf- External damage Is an error occurring in an area of
cient handling of large amounts of data (on the the system not directly connected with procvssing
order of 4 a 10 9 bytes) of varying formats and com- the current instruction. Another frequent category
plexities. Is system recovery (RCVY), at 340. mostly in con-

Junction with some type of storage error (STRS).
AhALYSIS Apparently the system was able to recover by using

error correcting codes or by retrying the instruc-
InltialJ. 2ai2 Analysis tion in progress. Notice that storage errors were

involved in almost half the errors (222 or 492)
As en example of a simple analysis. let us Su-a- with about half of those (101 or 22X) being immedi-
rize the types of machine checks that occur in the ately corrected by the hardware. In fact, other
error data. Us mill count all unique patterns tabulations show that the remaining storage errors
found in the machine check status bits provided by were dealt with by operating system termination (54
the hardware. The SAS3 program used to generate or 12Z), and task termination (76 or 17X). System
Table 3 is less than fifteen lines long and as* damage (SOMG), which causes the operating system to
very simple to write. Each ro in this table rap- atop immediately after recording the failure,
resents a unique pattern which may include one or occurred 2X of the time. The above shows that an
more indicators that make up the error type. Posi- assortment of fault recovery techniques are being
tions containing *--I mean that the corresponding used and contribute markedly to overall system per-
indicator was not in the pattern; abbreviations formance. In fact. we find that in only 142 of the
(such as SOMS. 1011. etc.) are used as mnemonics errors does the operating system stop processing.

for indicators that Mere a in the pattern. For
example, the second row indicates that of the 456 Workload jMW Error AnaL a.si
errors occurring in the three years. 100 were hard-
ware-recovered storage errors. The figures at the The data consisted of three years of loadffailure
bottom of each column shoe the number and percent measurements, 1979, 1980 and 1981. The 1981 data
of errors for which the corresponding indicator was contains additional measurements made by our spe-
sot. cial purpose interrupt monitor. Initially. me ana-

lyzed each year separately. Since there was no
TABLE 3 significant difference in the 1979 and 1980

results. it was considered appropriate to combine
Sreakdown of CPU Error Types the corresponding load-failure data. Of the thir-

teen workload measures collected for the study,

four wore chosen to be studied for 1979 and 1980.
SYS INST SYS EXT OE- STOR- They Meres

1. CONEU - The sum of memory allocated by batch
.. .. .. DM . . 169 37.0 jobs (K bytes).

.. .. ROVY .. .. STRG 100 21.9

-- 1G5 -- . STR 99 21.7 2. EXCP4 - The 1.0 initiatation rate by batch
.. .. -RCVY .. .. .. 46 10.0 jobs (I'Os per second).

EIIS -- STRS 21 4.6
SOl--.. .. .. .. . 11 2.4 3. SYSCPU - CPU utilization for system. i.e.

-- RCVY -- DESR -- 6 1.3 non-batch, tasks (a fraction between 0 and 1).

.. .. RCVY EDrl -- STR 1 0.2
-- -- -- 1 0.2 4. TOTCPU - Total CPU usage (a fraction between 0
-" OMG -- EOnG .. .. 1 0.2 and 1).
-- IOM -- EODM -- STRG 1 0.2

- - For 1981 the following interrupt measurements were
Total Errors: 456 100.0 also included:

Totals for each indicator considered separately 1. SVC Supervisor calls (rate per second).

11 102 153 193 6 222 Frequency 2. 10 1- I/0 interrupts, completion of I/0 opera-

22 222 342 42% 1X 49X Pct. of All tions (rate per second).

Errors
3. PR08 - Program interrupts (rate per second).

The probability distribution Ala) of a workload

variable is defined by

3 The Statistical Analysis System is a powerful
system for managing and analyzing data [AS 793.

It was used for most of the data analysis. ' An acronym for "EXecute Channel Program"



A(s) a Pr (workload a aOA HAZARD MiODEL

and will be called the probability distribution of In this section we describe and validate a model,
load. Mhen failures are collected and matched to hereafter referred to as a load-hazard model, which
workload, the joint probability distribution of will form the basis of our tests for a possible
failure and load results, and is defined by load-failure dependency. It will be shown that if

the load is acting as a stress on the system, then
fix) a Pr (failure occurs and load a x). the load-hazard will increase with increasing load.

In this expression, failures and load values are The object of our analysis was to determine
represented as they occur on an actual system, whether a load-failure relationship exists in our
where favored loads contribute more to the distri- data, i.e. whether a higher load stresses a system
bution than loads of low probability. To remove more then a lower load. in practical terms, if
this effect we divide fix) by the associated load such an effect exists, we expect the load to act as
probability Ax). Using the well known notion of a a stress factor. The proposed model is similar in
conditional probability distribution [Feller 68] we nature to the familiar hazard rate model from reli-
write ability theory. Recall that the hIzer rJ., which

f(x) is the conditional probability that a system in
gW) a Pr (failure occurs I load a a) a - operation at time t will fail in the interval

Ax) (t,t+At), is defined In [Shooman 66) es

Therefore g(x) can be thought of as the probability Pr (Failure in (t,t+&t))
of a failure at a given load when l loads &U (t) z Z

equally represented; It is the conditional failure Pr (No failure in tO,t)
probability.

A commonplace analogy to illustrate the above A constant hazard rate implies that failures are
distinction is that automobiles travelling at ISO occurring randomly in time. i.e. that there in an
mph have a higher probability of accident than exponential failure relationship with time. An
those travelling at 55 mph. However, there are far increasing hazard rate implies that the system is
more accidents for autos going 55. To obtain an wearing out with time.
accurate representation of the risks involved in
travelling at high speed, we must divide the number
of accidents occurring at each speed by the number
of autos travelling at that speed. Figures 4 and 5
depict the A. f, and g distributions of System CPU 5 The workload (or load) is assumed to be a dis-
(SYSCPU) and Batch l/O Requests (EXCP) for 1979. crete random variable for this discussion.
1MO. and 1981.

SYSCPU (Cond.) SYSCPU (Load) SYSCPU (Joint)

" e 0.126 0.00025
0.006 O.1O 0.002D

T 0.004.... oo.. .0 o.oo0 s
10 0.002 0.080 0.00010

0 0.2 4 0.0 . 1 0.2 0.4 0.. 0. 1 0.2 0.4 0.6 0.8 1

X (SYPU) (SY(7U)X (SYSCFU)

Figure 4. Frequency Distributionst System CPU - 1979. 1980.

System CPU is the fraction of CPU usage spent on system (i.e. non-user) tasks.

EXCP (Cond.) EXCP (Load) EXCP (Joint)

0-005 0. 20 0.0006
0.004 0.15

0.0030000

,i 0003 L4~0.10
0.002 W o.00I
0.001 0.05

0.000 0.00 0.0000a 20 40 so 0 2o 40 80 0 20 40 6o
X (EXCP) x (EXCP) X (Exc=,)

Figure s. Frequency Distributions: EXCP - 1979, 1980.

EXCP is the number of user program I/0 requests per second, based on five minute averages.



12

In close analogy with (1) above we propose a must superimpose the associated load probability on
.Lni d2endj hazard. This is illustrated by the the hazard calculated in (2). Denoting by zo(a)
folloming elementary hypothetical experiment, the transformed hazard, we have
Imagine that the system is operating in the range
0 ( a ( L. where x is the actual system load and L ze(x) a z(x) A(C) (3)
its upper limit. Assume that us have Mi identical
machines which are to be tested for a load-failure
dependency. The experiment consists of testing Me refer to the hazard z(z). as defined in (2),
each system for failures for increasing values of as the fundamental hazard. This is because it can
X. We comhmnce by defining n increasing values of be thought of as an inherent property of a particu-
x, i.e. X1 ( 7z ( ... ( sn, at which we wish to lar system and Is not subject to varying load pat-
test our computers. The machines are first run in terns. When a varying load pattern is taken Into
the range CO. xa). The load on each machine is account, it can be thought of as picking out*
then increased from xl to xl and the number of aspects of the fundamental hazard function. This
failures are counted. The systems are then loaded hazard as(x) defined in (3) will be referred to as
from at to X3 and the failure frequencies estab- the apparent hazard, since it is closely dependent
lished. This process is continued until the maxi- on the load distribution.
mum load limit an is reached. If failures are load
dependent, we expect that the risk of a failure Illustrative ExamaL
will-increase with increasing a in our experiment.
This will be reflected in the corresponding fre- The following example illustrates how a particular
quencies. In more formal terms, we expect the workload can modify a given fundamental load hazard
orobabilitt that D g systemji.I. jJ A 1j1o level z(x). figure 6(a) shoos a sample fundamental haz-
I t Al. given that it J urrently running 3t X. ard z~x). Note that z(x) is Increasing with load.
will increase with increasing x. Thus, if all load values are equally likely, the

system has a higher risk of failure at higher load
The conditional probability described above values than at lover load values. Fig. 6(b) is a

bears a close reseablance to the classical hazard hypothetical load distribution where the load vari-
rate. Accordingly, we define a load hazard sVx) as able is the fractional CPU utilization, with 0 for

an idle CPU and I for a fully busy CPU. Finally.
Pr (Failure in load interval (x,x+Axl) rig. 6(c) gives the apparent hazard due to the

z(x) a (2) effect of the load distribution in (a). The appar-
Pr (No failure in load interval (0)) ent hazard is now decreasing simply because higher

load values are less probable.

g M d V a)l d at on

I - SiZ)
Before using the proposed model on the SLAC load-

where: g(x) is the conditicnal failure probability, failure data, we tested it on art artificially cre-
ated data base. Our objective was to test if

S() is its cumulative distrib. function. indeed the hazard model would predict a known
dependency. Two tests more performed. In the

If z(x) increases with a. it should imply that the first the load hazard was expected to remain
load is acting as a stress or mesrout factor. If. unchanged with increasing load (i.e. that an expo-
however, z(x) remains constant for increasing x. we nential load-failure relationship exists). Thuss
may surmise an exponential relationship with load.

Note that in our definition of load hazard we Pr (Load induced failure) z a
have removed the variability- of system load by
using gx). Thus in the hypothetical experiment wherei . a system load
all loads are equally represented. This of course
is not true in practice since load is best a r constant load hazard parameter
described as a random variable with a probability
distributions it is simply the associated load dis- A uniform load distribution was assumed. An arti-
tribution, A(x). defined above. In order to deter- ficial date base consisting of 20,000 load samples
mine the hazard for a particular load pattern, we CS minute averages) was created. The sample was

(a) Fundamental Hazard (b) Load Distribuion (€) Apparent Hazard

GA A,~ ~ Olin
0.401 0.w0

e~s as aum .
I --- I .. . . I , I ---0 fO .-- L ]a

0to 00 0.000

? 0 . m I 0.? 0 0. 3 0. 0. 0. t
a (LOA) x (Lam) a (Ieee

figure 6: Example of fundamental and Apparent Hazards
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then seeded uith failures, exponentially related to HAZARD PLOYS

the load level (i.e. load to first failure is expo-
nential). An unbounded arbitrary load parameter The generation of the hazard plots and associated

(e.g the /C rate) uas assumed. The failures were statistics involved extensive date processing. In

generated using an inverse transformation method each hazard plot. z(x) or zsCx) is calculated and

similar to that desoribed in [Fishman 73], for a plotted as a function of a chosen uorkload vari-

hazard value of A * 0.001. In the second test, the able, x. In developing hazard plots for the load-

hazard uas expected to increase uith increasing failure data, there Is an important difference

load (e.9 a uniform load failure relationship). A betueen the reel and the artificially created data.

bounded load parameter (CPU usage) was modeled. In This lies in the fact that. uhile an artifical data

each case our hazard model was able to pick out the base has specific dependencies seeded into it, in

knoun dependency. The resulting fundamental haz- the real uorld, failures can occur due to a number

ards. as calculated by our formulation, are shoun of causes. Examples ares temperature, humidity,

in Figures 7 and S. random noise, mechanical failures, and design
errors, some of uhich are unrelated to our study.
Those factors not related to load can be expected
to behave as noise in a load-failure analysis. If
these other factors are predominant, ue can expect
to find no diacernablo pattern in our hazard plots
i.e. they should appear as uncorrelated clouds

A-O.OO1 (e.g. see Fig. g). This is uil understood in any
_ _ _ _ statistical study of dependencies.

oo~:.Z I. *• I

&a= .. .Uncorrelated Cloud

5 + + +
+ +

as ... W 3 + +

1 + +

Figure 7 Hazard Plot: Exponential Model 0 1 2 3 4 5

Figure 9t Uncorrelated Hazard Plot

An easily discernable pattern. on the other
hand, uould indicate that the load-failure depen-

0= . dency dominates others. The strength of such a
relationship can be measured through regression.
Figures M0, I1. and 12 depict the hazard plots for
the three selected load parameters. The regression

coefficient R2. uhich is an effective measure of
the goodness of fit, is provided for each plot.

I I .Quite simply, it measures the amount of variability
0 0.2 0.4 0. Ls9 in the data that can be accounted for by the

regression lmodol. R& values of greater than 0.6

(corresponding to an R ) 0.75) are generally

Figure 8: Hazard Plots Uniform Model interpreted as strong relationships CYounger 791.6

' The range of IRi from 0 to I is typically divided
as follous: (0. 0.25) moderately uak; (0.2S.
0.5) moderate; (0.5. 0.75) moderately strongt

(0.75, 1.0) strong.
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SYSCPU (Fund.) SYSCPU (Load) SYSCPU (Apparent)

to......... ... ["I...I...I..O100 ..1"...I .... "'"

R20 50.100WY . L4~ 0.00+
11 RuO.95 2"020 0.

i o Ls .o.; o oooI. 0.01 0 0 +10- + +. 6 U L i0.0000 ++
Fiue0.0 0.0000 0.20.4 0.60. 1 0 0.2 0.4 0.6 0. 1 00.20 .4 0.6 0.6 1

X (sgclI) X (UYSCPU) X (STMCM
Figure lOr Hazard Plot: System CPU

The vertical scale is exponential in these
plots, indicating that the hazard Is rising
sharply at peak leads.

SVC (Fund.) SVC (Load) SVC (Apparent)

0.010 R 2.0.85 o-15+ ++

°0.00 0.10 O6~"0.00
0.001 oZo I.... I. ++.....

0 200 400 600 800 0 200 400 600 60 2 40 O
X (SY ) X (SVC) X (SVC)

Figure It: Hazard Plots SVC
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1W0 +S+ 0.00
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X (Etp) X (EMT) X (X)
Figure 12: Hazard Plot, ExOP

It can be seen that the hazards are
increasing with each of the load parameters shown. CONCLUSION
The relationship is particularly strong with system
CPU or total CPU as load parameters. Wist it would The analysis shows that there is a strong load
appear from our data that the load parameters are dependency of internal CPU errors at SLAC. The
acting as a stress factor. i.e. that there is an observed tendency is present in three years of load
increasing risk of failure with increasing load, data analyzed. This is significant because our

previously reported results could only provide us
Note, however, that there is some degree of with an external view of permanent system and com-

overlap between the various load measures consid- ponent failures. By examining the CPU error gener-
ered. Ideally, one would like to define and esti- ation process me have been able to study the inner
mate a multivariato hazard function which correctly behavior of the system and its reaction to errors.
reflects the relative contribution of each load Consequently, we have gathered the best data possi-
measure. In order to effectively achieve this goal ble. A load-failure relationship found at this
it is necessary to construct a multivariato utili- level must. in our view. be a fundamental
zation function U (XI. X1, ... Xnl that relates the phenomenon. In addition, the fact that a large
many varied measures of load to a single concept of majority of these errors are transients or inter-
sytem activity. It is expected that the function U mittents provides new information on these error
would depend strongly on system configuration. The types viz. their toad dependent behavior.
development of such a model is currently under
investigation. Our analysis procedure has been demonstrated on
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artifically created data base seeded with failures. [Castillo 51] X. Castillo and 0. P. Siowlerek,
The tuo hazard models proposed clearly dlfferenti- "Uorkload. Performance end Reliability of
ate between fundamental (or inherent) and apparent Digital Computing Systems." JiLst. Eleventh
load dependent failures. An estimate of the funda- International Symposium on Fault-Tolerant
mental hazard z(x), provides the basic load-failure Computers, June, 1981, pp. 64-S9.
relationship. The apparent hazard z5(1) estimates
how z(x) is modified by the load probabilities. It erailer 683 U. Foller. An Introduction 12
is. in principle, possible that even when no inher- Probabili Th gory IiD 1 Applications. Miley.
ent relationship exists between load and failures. 1968.
we could conceivably obtain an apparent dependency
simply due to the fact that some load values occur Ererrari 75] 0. Ferrari. Cnmuter Systems
more frequently than others. Alternatively, we can Performance valuation. Prentice-Mall. 1975.
have the reverse situation where an increasing fun-
damental hazard is transformed into a non-inreas- [Fiahman 733 8. S. Fishman, t anid Metho ds
ing or even decreasing apparent hazard by a die- J Discrete Event diaitui Simulation. Miley.
tinctive load distribution. 1973.

As with any statistical analysis, this is not [Gunther 80] H. L. Gunther and M. C. Carter,
proof in itself. However, the increasing body of "Remarks on the Probability of Detecting
evidence accumulated on different computers with Vaults", toj st, Tenth International Symposium
differing load and failure patterns shows that on Fault Tolerant Computing. October 1950.
workload should be considered as a factor relbttng
to reliability. Workload can be thought of as a [DOn 733 IBM Corp., aS/us System Management
stress on the system, with greater stresses result- facilitie s (=If). Order No. GC35-0004. 1973.
ing in greater risk of failure. In most cases the
effet of this stress is not permanent, since most [IBM 793 lBl Corp.. OS/VS. DOS/VS1, VM/370
errors are transient. The design of computer aye- tnvironmental Recording Liiiin d mi Printing
teas mill be greatly aided if this type of analysis (J gr) , Order No. GC2-0772. 1979.
can help uncover cause and effect relationships in
hardware errors. [lyar 81] R. K. Iyer. S. E. Butner. and E. J.
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SELF-TESTING EMBEDDED PARITY TREES
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AThe above problem was recognized and explicitly
considered by Anderson, [Anderson 71]. To build a

This paper presents a procedure for modifying self-testing network from self-testing blocks he
embedded parity trees so that they are tested by required that each block be fully exercised, i.e.,
the inputs they receive during normal. fault-free, that it receive all its input codewords with the
operation of the circuit. This eliminates the need application of codewords to the inputs of the main
for direct control over the input lines of the network. This, however, poses a strong restriction
parity tree for testing purposes. The faults that on the design, and for some cases may be Impossible
are detected are single stuck-faults at the to achieve. Smith defined the concept of
terminal lines of the XOR gates in the tree. sufficiently exercised blocks, which are self-
Applications of this procedure to aoc other testing (eabedded) blocks that receive their test
parity-related embedded code checkers are inputs during normal. fault-free, operation of the
presented. network, [Smith 76).

Based on Anderson's results, Wakerly concludes
INTRODUCTION that the general problem of designing a network of

A modular design for complex VLSI systems is 0
necessary for many reasons. One such reason is B
deasign for testability". It Is simpler to deal B 01

with smaller blocks when the question of test
pattern generation or error checking capability is
addressed. Unfortunately, a system that consists
of self-testing blocks is not necessarily self- M outputs of :
testing. For example, consider a network that
Includes a combinational circuit B with inputs I I

to Ip, outputs 01 to 0, and a parity tree C that 1 0 1p 1 4-0 10110

calculates the parity of the outputs of B. as in
Fig. 1. Parity tree C is tested for all single FIG. I An embedded parity tree.
stuck-at faults at the terminals of the XOR gates
by the test inputs shown in Table 1. However,
suppose that by applying normal inputs to B,
outputs of B receive only the patterns that are
listed in Fig. 1. In this case, the network of
Fig. I is not self-testing. 01 02 03 04

This simple example typifies the underlying 0 0 0 0
problem in building a self-testing network by 1 0 1 1

connecting self-testing blocks together. The 1 1 0 1
problem is that it may be necessary, for applying
test patterns, to have direct control over the
Input lines of an embedded block, i.e., a block TABLE 1 Test Inputs for parity tree
some of whose input lines are not primary network C of Fig. 1.
inputs. Such direct control generally requires
extra pins and/or circuitry on the chip and adds to
the complexity of the design.
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fully exercised (and. for that matter, sufficiently
exercised) blocks is a difficult one to solve.
[Wakerly 781. Here, the discussion is limited to
only one class of blocks, namely, parity checkers.
A set of sufficient conditions are stated for the
existence of sufficiently exercised embedded parity o1

trees. If these conditions are satisfied, then a
slight modification of the parity checker makes It On ,
such that the checker is tested by the input
patterns that it receives during normal, fault- I C
free. operation of the network. The faults that
are detected by the normal inputs are the single
stuck-at faults at the terminals of the XOR gates
In the parity tree. The modification has no E Ez
hardware cost or speed degradation associated with Er
it.

NOTATIONS AND DEFINITIONS FIG. 2 The circuit under consideration.

Consider a network Be and a combinational block
B in B

e
, as shown in Fig. 2. B has p input lines.

11 to Ip, and n output lines. 01 to On . The output checker C is obtained by partitioning the 01 lines

of B is encoded using techniques such as even into two arbitrary groups of preferably equal or
parity encoding. C is a Checker that checks almost equal sizes. Then, for each group, there is
whether the output lines of 8 form a codeword. C a parity tree that calculates the parity of its
must have at least two output lines, otherwise, its corresponding lines. The output of one of the
only output line may be stuck at its "good* logic trees is then inverted and, under normal
value and this fault cannot be detected by applying conditions, forms a 1-out-of-2 code with the output
codeword inputs to C. Therefore, as shown in Fig. of the other tree. For more detail, see, for
2. assume that C has two output lines. Usually the example. [Wakerly 78]. Figure 3 shows an example
output lines of C form a 1-out-of-2 codeword. Thus of such design for 11 input lines. If the o lines
the input of C is assumed to be correct if and only
if the output lines of C carry complementary logic (I.e.. output lines of B) are connected to the
values. For more detail, see [Carter 683, input lines of C as shown in Fig. 3. then the
[Anderson 711. and EWakerly 78]. In this and the normal column corresponding to the ith input of C
next section, assume that the input code space of C (from the left) is the same as the normal column
is the set of all n-bit words with even parity and corresponding to O. However, note that any 0 can
the output code space of C is the set of 1-out-of-2

words. Since input lines of C come from the output 00 04 06 08 
0
1o

lines of S. C Is naturally an embedded block.
Furthermore. the word patterns that the input lines Om 03 05 al l 0
of C can receive during normal, fault-free, I I 1 II
operation of the network depend on the logic r --1 -P r ----
function of B, and In general are only a subset Of
all the even-parity n-bit words. The main
objective of this work Is to modify the parity I
checker C such that the normal inputs of C detect -
all single stuck faults at the terminals of the XOR
gates in C.

Consider a Boolean matrix M whose rows are all I C2

of the (distinct) word patterns that the n output
lines of 8 receive during normal, fault-free. I C1
operation of the network. If there are m such -_- _-_-_-_-_-__

patterns, then matrix M is an m by n Boolean
matrix. Note that all the rows of M have even El E2
parity. Call N the (normal) output matrix of B.
The columns Of M denote the logic values on10 1001

Individual output lines of B during normal, fault- 1 I 0 1 0 1

free, network operation. Thus, there is a one-to- " 0 0 0

one correspondence between the columns of N and the I 0 0 1 0 1

output lines of B. The column in 4 that
corresponds to output line 01 of B is called the

(normal) column corresponding to line 0 . FIG. 3 An example.

The traditional design of the single even parity
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be connected to any input line of C. as long as column obtained by XORing together the columns in
every 0 line is connected to exactly one input of P(x) is constant. In other words, x is passive If
C. Thii freedom is the basic tool utilized in the and only if the bit-by-bit XORIng of the normal
Algorithm A of the next section. The definition of columns corresponding to input lines in S(W)
normal columns can now be extended to apply to the results in a constant vector. Otherwise, x is
internal lines of C. The normal column active. In Algorithm A, El and E2 denote the two
corresponding to any line x in C (Fig. 3) is an m- primary outputs of the parity checker.
element Boolean column vector whose ith element is

the logic value of line x when the output of B is Algorithm A:
the ith row of the normal output matrix of B, for
ixl.2.. m. That is, the components of the normal i. If El is passive, exchange any arbitrary Oi
column corresponding to a line x are the logic in S(EI) with any arbitrary Oj in S(E2).
value3 on line I for all normal outputs of B, (This exchange makes El and E2 active.)
applied in the order they appear in the normal 2. Mark El and E2.
output matrix of B. A line x in C is an active 3. Consider input lines a and b of any XOR
line if it receives both 0 and I during normal, gate with marked output line and unmarked
fault-free, operation of the circuit. Thus, the input lines. If, say, a is passive,
normal column corresponding to an active line is a exchange any Oi in S(a) with any Oj in
nonconstant column. A line with constant normal S(b). If this exchange makes b passive,
column is a passive line. exchange Oi, which is now in S(b), with Ok,

a member of S(a) different from OJ.
(If before Step 3 both a and b are not

THE DESIGN OF SELF-TESTING EMBEDDED PARITY CHECKERS active, then this Step makes them active in
at most two exchanges.)

For a given set F of possible faults in it, a 4. Mark a and b.
parity checker C, as shown in Fig. 2, is said to be 5. If there are no more unmarked lines, EXIT;
self-testin if for any fault f in F, there Is a otherwise, go to 3.
normal output pattern of B that causes either a
<1,1> or a <0.0> output for C. Assume a design In the Appendix it is proved that if conditions Al
such as in Fig. 3 for C. Let the set F of faults and A2 are satisfied, then Algorithm A makes the
consist of single stuck faults at the inputs and parity checker C self-testing.
outputs of the XOR gates. Since there is always a
sensitized path from any XOR gate terminal to the EXAMPLE: Once again, consider the example of

output of the parity tree, the embedded parity Fig. 3, with the specified normal output matrix for
checker C is self-testing if and only every XOR B. Since El corresponds to the parity of the first
gate terminal is an active line tBossen 70]. Given

a parity checker C and the normal output matrix for 8 inputs of C, with the connection shown in Fig. 3,
the block B, as exemplified in Figs. 2 and 3, E1 will have the following normal column:
Algorithm A below inspects every XOR gate terminal
in C to see whether it is a passive line. If it 0
is, then the Algorithm finds a new connection 0
between the output lines of B and the input lines 0
of C that makes that line active. After the 0
termination of the Algorithm the connection 1
prescribed by it makes every line in C active, and
hence results in a self-testing embedded parity So, mark both E1 and E2. Since El is marked.
checker. In order for the Algorithm to work, the

following conditions must be satisfied: consider lines x and y. Line x is the parity of
the first four input lines of C. Therefore, the

Al. Circuit C is implemented with two-input normal column corresponding to x is an all-O
XOR gates. column: i.e., x 1s a passive line. To make x

A2. In M, the normal output matrix of B, no active, exchange the connections of 04, which is in
column is constant and no two columns
are identical or complementary. 3(x), and 05. which is in S(y). This results in

Two columns are complementary if they are matrix M' of Table 2, which is obtained by
complementary in all components. Note that exchanging columns 4 and 5 of matrix M. This

Assumption A2 amounts to removing the redundant exchange makes x active; however, line y becomes
lines from the output of block B. If the above passive, as its corresponding normal column is now
conditions are satisfied, Algorithm A below makes an all-i column. For this case, Algorithm A
the embedded parity checker C self-testing. Note cancels the latest exchange, and instead exchanges
that in C (Fig. 3), any terminal of any XOR gate is 0 with another member of S(x), say, 03. This
the parity of a set of input lines of C. For line

x, this set is denoted by S(x). Let (x) be the exchange results in matrix M" of Table 2, which is
binary matrix whose columns are the columns obtained from M by exchanging columns 3 and 5. It
corresponding to the fault-free input lines in makes both x and y active. The continuation of the
S(x). To check whether a line x is a passive line, Algorithm results in no more exchanges. The matrix
that is. to check if the column corresponding to % M" is translated into the connection shown in Fig.
is a constant column, one has to check whether the 4. All the lines in parity checker C of Fig. 4 are
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active. Therefore, the embedded checker C is self- Q; 0i
testing. 0 0

n, 10 10 10 01 10 , 1 1 0 0 1 , 1 

TABLE 2 Modified output matrices for

the example of Fig. 3.

0-fhlcIC: c

02 0, 06 0a  a,0

. - FIG. 5 A self-testing two-rail checker
_Cz Itree.

1 ~cl C

l[ 01 0a 03 0 0 0 a, 0

FIG. 4 Self-testing connection for
the parity checker of Fig. 3.

APPLICAXIONS

Algorithm A can be used to design self-testing
embedded checkers for other parity-relatd encoding
schemes.

FIG. 6 Parity-tree equivalent of

3elf-Testing Ebedded Two-jail Checkers Fig. 5.

The self-testing two-rail checker tree with n
input pairs, as described In [Carter 68] and
[Anderson 71J, has a one-to-one correspondence with
an n-input parity tree. where each input of the
parity tree is replaced with an input pair from the
two-rail code, and each XOR gate is replaced with a Q; 0i 3 0 0i 0; 0; 0;

two-rail checker With two input pairs and a 1-out- 0 0, s  0, o
of-2 output code. Fig. 5 shows a self-testing two- I I
rail checker tree with 8 input pairs. The
corresponding parity tree for this is shown in Fig. I
6. If the 0lines of Fig. 5 satisfy Assumption

A2. then Algorithm A can be applied to the circuit
of Fig. 6. and any changes done on this circuit can
readily be translated back into the original two-
rail checker of Fig. 5. If line T of Fig. 5 (and
hence of Fig.6) is passive, the two-rail input
pairs should be partitioned into two arbitrary
groups, as in self-testing parity checker design. Cl
and the pairs in each group should have a separate E, ,,,,,...,,.,.. ---"
two-rail checker. A trivial such partitioning for * *
circuit of Fig. 5 Is shown In Fig. 7. As far as T, 7

speed is concerned, this is not a good partition; 2 0

however, other partitions are Possible that result
in faster checkers. Now each tree in Fig. 7 can be FIG. 7 A partitioned two-rail checker.
translated into a parity tree. as described above.
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Self-Testing Embedded Detector for SEC-DED Circuits the circuit of Fig. 8 (i.e., circuits of Figs. 9
and 10) self-testing. The procedure works if all

Single error correcting and double error the 22 input lines of the SEC-DED circuit satisfy
deteoting (SEC-DiD) codes are a very popular means Assumption A2.
of checking/correcting faults in memory arrays. The
general scheme for SEC-DED decoders is shown in First, each XOR tree block of the syndrome
Fig. 8. Such circuits are naturally embedded. In generator must be modified as shown in Fig. 11.
particular, if they are used with ROMs. one may not For the particular example at hand, there are six

be able to apply the required test patterns to such parity checkers, each with a I-out-of-2 output
these circuits since the contents of ROPs are code. Thus the output of the syndrome generator is
predetermined. Thus it is necessary to make a two-rail code with six pairs. <E1.E> to
modifications to make such embedded SEC-DED
circuits self-testing. Here we use Algorithm A to <E 6,EV>. If for all normal inputs to the circuit
make the detector portion of the circuit self-

testing. I1 $ ... 2)E6 is constant, take any one of the six

As a specific example, consider 16-bit input parity checkers of the syndrome generator and
data. This requires 6 check bits. Thus. in Fli. exchange line 0 with any of the other eight lines,
8. na16 and ms6. Heso has provided an optimal

circuit for this case. CHiao 701. The same design (Fig. 11). After this, the above parity is no
has been used in some comercial products, e.g.. longer constant Khakbaz 82a]. For any of the six

TI's 1 54/74L5630. Let the data lines be denoted parity checkers just obtained, use algorithm A to
by d0 to d15, and let the cheock bits be oI to 06. make It self-testing. Since all the EI output

Figures 9 and 10 show the design of the syndrome lines of the syndrome generator are (inverted)
generator and the error detector, respectively, as primary inputs to the SEC-DED circuit, they satisfy

given in H1sio 70]. The control lines have been Assumption A2. Hence an (embedded) self-testing
left out for simplicity. The following describes a two-rail checker can be designed, as described
procedure for making the the detector portion of above. This replaces the OR gate of Fig. 10.

check 
Pro =yrrme 

double error
!

FIG. 8 SEC-DED decoder circuit.
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FIG. 0 The error detector.

FIG. 12 Modified detector portion for
self-testng embedded SEC-DED°

0
a ° decoder circuit.

07

6 generator, one erroneous input results in an odd
s number of erroneous lines at the output of the

0, syndrome generator, i.e.. of the 12 output lines of0 the syndrome generator, an odd number would be
03  erroneous. Similarly. if two input lines are

erroneous, an even number of the output lines ofnot hard to see that the <PQ> pair of Fig. 12

p forms a I-out-of-2 code if and only if there are an
it even number of errors on the 12 input lines to the

two parity trees. This argument leads to Table 3,
twhich indicates how to interpret the outputs of the

circuit of Fig. 12.

EI

FIG. 11 Modified parity tree for R R' P a ","nin
the syndrome generator. 0 1 .

correct Input
1 0 -

Finally, to distinguish between single and double 1 1 a
alnqle err

errors, the E lines are input into a parity tree. 0 0 a a
Similarly, a second parity tree calculates the
parity of the Ej lines. Since the parity of the I I a ,doblt error

o 0 a a'
E lines (similarly E! lines) were made to be a

nonconstant, and since the l lines (similarly E

lines) satisfy Assumption A2. they can be made - a is 0 or 1.
self-testing using Algorithm A. Figure 12 shows
the self-testing embedded error detector portion of
the SEC-DED circuit of Fig. 8. If all the inputs TABLE 3 Reading of outputs of the
to the SEC-DED circuit are correct, then the circuit of Fig. 12.
syndrome generator produces a two-rail code and
<R.R'> results in a T-out-of-2 code. If one or
more input lines are erroneous, then the output of

the syndrome generator will not be two-rail, and
hence <R,R'> does not form a 1-out-of-2 code. By
the special encoding of [Hsiao 70) that is used
here, and by the special design of the syndrome
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CONCLUSION [Wakerly 78] Wakerly. J.F., ERROR DETECTION CODES,
SELF-CHECXING CIRCUITS AND APPLICATIONS, Elsevier

A procedure has been developed for designing North-Holland, Inc.. New York. New York. 1978.
embedded parity checkers that are self-testing for
all single stuck-at faults at the terminals of the
XOR gates. This procedure has no hardware cost or APPENDIX
speed degradation associated with it. However.
applications of it to other parity-related code Consider a set V of m-bit binary vectors. If v is
checkers may have a slight speed penalty (e.g.. in V. the set obtained by removing v from V is
Fig. 11). denoted by V-v. Also, the set obtained by adding a

new vector w to V is denoted by Vw. Let p(V) be a
There is much room for expanding the ideas and vector obtained by bit-by-bit ZmRing of the vectors

methods presented in this paper. In particular (1) in V. That is. the ith element in p(V) is the
work needs to be done on finding other codes for parity of the ith row of a matrix whose columns are
which self-testing embedded checkers can be the members of V. Call p(V) the parity vector
designed, and (2) other algorithms should be corresponding to V. Similarly, define p(V-v),
developed for detecting a more extensive set of p(V+w), and so on.
faults in the checker. One such algorithm has been
developed recently that results In an embedded LEMMA I Let u, v, and w be m-bit binary column
parity tree that is self-testing for all faults vectors. If both u(v and uj)w are constant
within any single TOR gate [Khakbaz 82b]. vectors, then either v and w are identical or they

are complements of each other.

ACKNOWLEDGMENTS LEMMA 2 Let V be a set of s-bit binary column
vectors. Let v be in V. Then, p(V) a p(V-v)(®v.

This work was supported by the T'! r.uy
Electronics Research and Development Comand under LEMMA A Let V be a set of s-bit binary column
Contract No. DAAK-20-80-0266. Many thanks to vectors. Let w be an s-bit binary column vector
Professor E.J. NCluskey for his support and not in V. Then, p(V4w) a p(V) 0w.
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The proofs of the above Lemmas are simple and
directly follow the definitions.
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AND DEV.. Vol. 14, No. 4, pp. 395-401. July 1970.

3(1) a S(EI) - 01 + 01;
[Khakbaz 82a] Khakbaz, J.. "Self-testing embedded and S(E2) s S(E2) - Oj + Oj.
parity trees." Technical Report. Computer Systems
Laboratory. Stanford University, Stanford. Ca. If p(S'(El)) is also constant, then by Lemmas 1, 2.
941305. To be published, and 3 it is concluded that 01 and Oj are identlcal

or complementary, contradicting Assumption A2.
[Khakbaz 82b] Khakbaz, J.. "Self-testing embedded Similarly, it can be shown that p(S'(E2)) is not
parity trees - exhaustive XOR gate testing," constant. Thus El and E2 are active at the end of
Technical Report. Computer Systems Laboratory, Step 1.
Stanford University, Stanford, Ca. 94305. To be
published. Now consider Step 3. Let a and b be the two inputs

to a gate whose output has been marked, but whose

[Smith 76] Smith, J.E.. "The design of totally inputs have not been marked. If both a and b are
self-checking combinational circuits." Tech. Rpt. active, they are marked. If, say, a is passive,
R-737, Coordinated Science Laboratory. University exchange 01 in S(a) with Oj in S(b) to get:
of Illinois. Urbana. Illinois, 1976.
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S'(a) 8 S(a) - 01 + 0j; (1) 01 1 either identical or complementary to Ok.

and S'(b) a 3(b) - 03 + 01. (2) Therefore in at most two exchanges in Step 3 lines
a and b become active and are subsequently marked.

By a similar argument as above. it can be shown Since each time that Step 3 is executed two lines
that this exchange makes a active. However, now b are marked, the Algorithm stops In a time
may be passive. In this case the specified proportional to the number of the lines In the

exchange results in tree. Finally. if t Is the output line of the gate
with input lines a and b, then, by the structure of

S"(a) z S'(a) - Ok * 01; (3) the tree. 3(t) a S(a) UNION S(b). Thus, any

and S"(b) * 3'(b) - 01 + Ok. (4) exchanges between S(a) and S(b) do not affect the
fact that t (or. for that matter, any ancestor of

Existence of such Ok different from 01 in 3'(a) is t) 1 an active line. In other words, during the
guaranteed, since otherwise S'(m) and hence S(a) process of the Algorithm, all the marked lines
would have only one member, which by Assumption A2 remain active. Q.E.D.
would imply that In fact a could not have been

passive to start ith. Substituting (1) in (3) and T If Assumptions Al and A2 hold for the
(2) in (4): parity checker C, then Algorithm A makes C self-

testing for all single stuck-at faults at the
S"(a) S(W) - Ok + Oj; (5) terminal nodes of the )OR gates.

and S"(b) z S(b) - Cj + Ok. (6)
PROOF By Le

s
na 4I, the Algorithm A makes all the

Since $(a)sS(a)-Ok+Ok, and p(S(a) is assumed to be lines in C active. Suppose line x in C is stuck at
constant (since a was originally passive), then u (u Is 0 or 1). Since x Is active, there is a
p(S"(a)) may not be constant: otherwise (5) and the normal input pattern to C that, under fault-free
above Lmas would yield that k Is identical or condition, puts logic value u' on x. Assume x is
complementary to Oj. Also since it was assumed in S(El). Then, with z stuck at u, the above input
that p(S'(b)) was constant (i.e. since it was pattern causes erroneous logic value on El. Thus,
assumed that the first exchange between 01 and Oj <Et.E2> does not form a t-out-of-2
made b passive), then p(S"(b)) would not be codeword. Q.E.D.
constant; otherwise. (2) and (6) would imply that



24

WATCHDOG PROCESSORS AND CAPABILITY CHECKING

Masood Namjoo and Edward J. McCluskey

CENTER FOR RELIABLE COMPUTING
Departments of Electrical Engineering and Computer Science

Stanford University. Stanford, Ca. 94305

ABTAC The idea of capability checking presented here
Is to us. an auxiliary low-cost processor. called a

Applications of watchdog processors for Capability Processor (CP), to verify the validity
detection of system malfunctions are described, of memory references. A typical configuration for
Low-cost watchdog processors can be designed so the system is shown in Fig. 1. The capability

that they have knowledge about the design Processor operates in parallel with the CPU and
specifications of a system and therefore can detect detects a large class of Illegal access@$ to the
a large class of malfunctions by monitoring the memory system: a subset of these illegal accesses
run-time behavior of that system, also is detected by the operating system.

The concept of capability checking is
introduced. Capability checking Is aimed at te

detection Of malfunctions that cause illegal access

to the memory system. It is shown that only a
subset of such malfunctions is detected by the

operating system. In the capability checking
technique all access-right information is given in
advance to an auxiliary low-cost processor, called

a -capability processor. The capability processor MOJ

checks the validity of each access to the memory
system dynamically. The implementation details of
a capability processor are explained.

INTRODUCTION ERROR 1 THOD

One of the most basic techniques for checking

the behavior of a system is the use of a watchdog
timer (Con 72]. (Orn 75]. The system is designed Figure 1
such that under normal operation it signals the
watchdog timer within a specified time interval.

This signal preseti the timer to its initial value. SYSTEM LEVEL MALFUNCTIONS

The timer generates an error if no preset signal is
received during that specified time interval. It Classical methods of testing concentrate on
is obvious that many malfunctions can occur while functional testing at the circuit level.
the system still generates a correct timing signal. Unfortunately there exists a gap between the effect

In this paper we study the design of low-cost, yet of faults at the circuit level and their behavior
more sophisticated watchdog processors for at the system level. As a very simple example
concurrent testing of a system. Watchdog processors consider a memory system that uses extra check bits

[Lu 80] can be designed to have more knowledge for error detection and correction. Some multiple
about the design specifications of a system and bit errors may go undetected at the circuit level.
hence be able to detect abnormal behaviors of that At the system level this may correspond to changing
system at runtimee a correct instruction to an incorrect one causing

the program to perform a different operation. We
Several approaches (801 781, [Yao 80] have been can detect such errors if:

proposed for detection of malfunctions which result

in control flow errors. Equally important is to 1).The design specifications (from which the

study the effect of these malfunctions on the way behavior of the system can be predicted) are known.
the memory is referenced. This would be an attempt

to-detect system malfunctions as well as to prevent 2) The errors cause abnormal behavior of the
memory mutilation, system.



25

Much research has been done in the area of a. An error in the PBR or PTE (PBR and PTE can
operating systems which support protection [Sal be changed only by the OS).
75]. In a typical descriptor-based system such as
the IBM 3/370 or the PDP-11/45 [Sal 751 the b. An error in the VPN. (part of the address
operating system loads the descriptor register with in an instruction).
the base, limit. and the access right information.
On the other hand in a capability-based system EFab c. Failure of the access check mechanism (CPU
74] such as the PLESSY S/250 [Eng 74] or the failure) and invalid access attempt.
Cambridge CAP computer (Wil 79] the users
themselves can load the descriptor register but d. A fault on the address bus.
only from a limited set of descriptor values (or
capabilities) that has been given to them by the On the other hand, most software errors are due
operating system. to design and coding errors and in general it is

very difficult to guarantee that once the software
Information used for the purpose of protection passed its test, it is free of any errors [ao 80].

is stored in the memory, and in general, all
protection systems assume fault-rree hardware. This
assumption, however, can be invalidated and CAPABILITY CHECKIN
protection violations can go undetected. This
problem becomes more serious in virtual memory Before proceeding to the subject of capability
systems or capability-based systems where many page checking It is helpful to define the terms which
tables or capability-lists are stored In the main are used in this paper.
memory. There are three categories of errors that
may not be detected by the operating system: Definition A system level malfunction is a

deviation in the behavior of a system from its
1) Errors in a memory word, protection design specifications as a result of a hardware

registers, address bus, etc. caused by hardware failure, a software error, or a design error.
failure.

In the presence of a system level malfunction
2) A software error (accidental or malicious) the operation performed by the system is either

In a user program. illegal or incorrect.

3) A software error in a system routine which Definition: An operation is illega if, based
is assumed to be highly trustable. on the design specifications, that operation is

never allowed. For example execution from a "data"
As an example of a hardware failure that can segment is an Illegal operation.

result in protection violations, consider the
paging system in the VAX-11 [Lev 80]. A program Definition: An operation is incorrect If based
references the memory by giving the Virtual Page on the design specifications and the current
Number (VPN) and an offset In that page. The VPM conditions, that operation is not correct. However
points to an entry of the Process Page Table (PPr). the same operation can be correct undeIa certain
A Process Base Register (PBR) points to the PPT. conditions.
The physical address is formed by concatenation of
the Page Frame Number (PFN), derived from the Page For example if a program can write into two
Table Entry (PTE), and the offset in the different data segments S1 and 32 depending on the
instruction, as shown in Fig. 2. The following value of a predicate "PO, an incorrect operation
hardware failures can cause a wrong memory access would be to write into S2 instead of 31 as a result
not detected by the protection system: of an error in "P".

In general, detection of incorrect operations
Is more difficult than detection of illegal

Pae Meacm' operations. Host incorrect operations occur as a
Base Reg. (P$R) (PPT) result of incorrect decisions at branch points.

These decisions in general can depend on the Input
data. Redundant predicates can be used to minimize
the probability of a wrong decision (Kan 75]. In
this paper we concentrate mostly on the detection
of Illegal operations although some incorrect
operations can also be detected.

I OP YP T Definition: An object is a set of logically
contiguous memory cells whose type determines the
class of operations that can be performed on it. A

r- PFN- F- ]S process can have 3 set of owned objects With full

access to them. In addition, a process can be
Physical address&address bus given access to some (external) objects by the

owner of those objects. Examples of objects are: a
program. a data segment, or a page.

Figure 2
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Definitin: A capabilit to an object is a ITPLEMENTATION

special name that allows a specific access to that
object. It has a unique logical address field. a The following assumptions are made: First, all
type and an access right field. access information given to the capability

processor by the main processor Is error free. If
At any given time a set O(01.02.....On) not, the CP may signal an access error while an

represents the set of all active objects. access is legal and fail to signal while the access
CI{CI1.Ci.....Cik) is the set of capabilities is Illegal. Second. the probability of simultaneous
that are given to the object Oi. An object 0t has failure of the main system and the capability
to present a capability Cij in order to access the processor Is very low. Third. all accesses from
object OJ. The access right is aij. The operation any location in an object Ox to any location in
of the capability processor is as follows: another object Oy are *equivalent'. In other words

if the object Ox can write Into the object Oy, this
A. From the point of view of the capability technique would not check whether or not the

processor each process is defined by a set of code referenced location within Oy is correct.

and data objects. The set of active objects
(stored in the physical segments of the primary The first stage of the capability processor is
memory) can be represented by a directed graph: an an address translator. It translates a physical

example is shown in Fig. 3. A vertex In this graph address Into a segment ID using the mapping
represents an object. An edge shows the access information, and it determines the type of the
right of an object to another, segment (code or data). In the case of a paged

memory system all references to different pages of
an object are mapped onto a unique segment ID for
that object using the SIT. This requires one
access to the SMT.

In Fig. 4 register Ix holds the segment ID of
01 ~ 02 06 the current code segment. SI. which is determined

from the current memory reference using the mapping

RD data in the SHT. The segment ID for the next
reference to the memory. 3j. Is also determined and
loaded into register By by the capability
processor. The entry SAT(SISJ) is reed out from
the SAT and is compared with the access requested
by the CPU. The watchdog signals an error if this

Figure 3 comparison fails. Notice that in this method the
capability processor checks the validity of each
access In parallel with the CPU operation. Once a

Before a program Is Initiated, all access-right successful access is completed, the capability
information is sent to the CP. This is done by processor loads Rx from Ry only if Ry holds the
loading the Segment Access Table (SAT) and the segment ID of a code segment. This operation is
Segment Map Table (SMT) in the CP. The row St (Si repeated for each memory reference.
Is the segment ID of the object Oi) in the SAT
contains the set of access rights for the object Oi mWj
(i.e. aij for jsl..k). An entry SAT(Si.Sj) in the
SAT shows the aCcess right of the object Oi to the
object Oj. A null entry denotes the no access
situation. For any code object O. the entry
3AT(SLSi) is an qxeCute access right. An object
Ok can be shared between two code objects O and Oj '.95.

with different access rights:

SAT(Si.Sk)xaik and SATtSJ.Sk):ajk :aik~ajk

B. For each memory reference, the physical
address is translated to a segment rD using the 77 1 7-7
54. This segment ID is used in turn as the
address for accessing the SAT. TWO segment IDs are P.*. *rn
required to access the SAT. The first is the (ST)
segment IM (SI) of the current code object (01).
The second is t5e segment MD (Sj) of the object Figure 4
(Oj) referencid by the current object. Si and Sj
are determined from the physical address in each Operations are divided into three classes: the
reference and the mapping information in the SMT. first class includes operations in which an operand

If the requested access by the CPU is not is accessed by the operation. Examples are read.
consistent with SAT(Si.Sj) which is read out from write. add. and move. In this case the Instruction
the SAT. the capability processor signals the main is fetched from a code segment and the operand is
processor and the main processor initiates a in a data segment. The content of Rx will not
recnvery routine for handling the detected error, change after suck operations.
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ABSTRACT followed by an error detector Is adopted. It

depends on how big the minimu
m 

distance Is used.

In this paper, an encoder algorithm for the
design of an autonomous Linear Feedback Shift 2 LFSR PROPERTIES
Register (LFSR) with specified minimum distance and
cycle length is presented. The fault detectability Figure 1 shows a general form of an n-stage
on the feedback path of this LFSR encoder is then LFSR with corresponding characteristic polynomial.
discussed. This shift register design significantly defined by
extends the work In the literature EH3ao 77] 2 n-I n
EPradhan 78]. and is based on cyclic codes. f(•) a 1hlx~h21...+hn-1  *.xn (I

where hI  1<i<n-1) Is either one or zero.

I INTRODUCTION 10

An autonomous Linear Feedback Shift Register
(LFSR) is an autonomous linear sequential network . . .
(Elis p 59] [Kautz 65] (Ze-nor for generating
sequences of a given cycle length (or period). This
LFSR is composed of interconnections of unit-delays Figure 1. The general fom of an LFSR.
(or D Flip-Flops) and modulo-2 adders (or Exclusive
OR gates), as shown in Figure 1. The behavior of an LFSR can be interpreted as

an ordered cyclic chain of states S; which are
The LFSR has been used In many different symbolio representation of the contents of an LFSR

applications. Example of these applications are: during successive shifts, given the initial
pseudo-random number janetors [0o1mb 67]. contents as SO. Let 5 i represent the contents of
signature analyzers [Benowitz 75] (McCluskey 811, th
shift register counters [Gschwind 75]. store an n-stage LFSR after the ith shift of the initial
address generators EHao TT (Pradhan 787. eto. contents. So . of the LFSR, and Sic) be the
For instance, in the L31/VLSI chip designs using a polynomial representation of Si. then St(1) is a
random testing scheme (Losq 761. the random Input
sequence feeding into the Device Under Test (DUT) polynomial of degree n-1,
can be autonomously generated by an LFSR of minimum S4I W a S *O++...+Sin 1n-(2)
(Hamming) distance 1. or by an LFSR encoder of
minimum distance at least 2 (Hslao TT. The following is a fundamental relationship between

the states in a cycle [H31ao 77]:
An LFSR of minimum distance I (or distance-i 3 (x) Z t'JS (I) mod f(x). (3)

LFSR) is an autonomous LFSR with minimum Hamming i j
distance I among the generated states. It cannot If T is the least positive integer such that f(x)

detect any fault inside Itself. If a fault (or divides x T-1. then for any state SW(x).
error) occurs that causes a faulty input sequence I
to the UT, albeit good, the output response will 

5
(1) a ITSI(I) mod f(x). (4)

be Incorrect which may result in the DUT being The integer T is called the exponent of f(x) and
rejected. This fault may be detectable on-line if the period of the LFSR.
an LFSR encoder of minimum distance at least 2

This work was supported in part by the National 3 ENCODER DESIGN
Science Foundation under the Grant Number MCS-
7904864. and in part by Intel Corporation under the Let a polynomial with coefficients in the
Honors Cooperative Program (HCP). Galois Field GF(q) [Peterson 72] be said to be a

eThe author is also with Intel Corporation, Santa Oolynomial over GF(q). A polynomial p(x) of degree

Clara. CA 95051. over GF(q) is called primitive if its root b of
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G?(qe) with p(b):O generates all the nonzero Example 1: Design a (6.3.41) LFSR encoder using
* f() mg(s)p(s) ,(~S0 xz3)O(1,x)(1,5 2)] z35,5 .

*lement3 of GF(q ). A polynomial g(x) of degree 1:-I The circuit is shown in Figure 2. The desired
over GF'q) for generating an (n.Ic) cyclic code is SW sfrte(,.)LS noe r akdb
called a generator Polynomial if It is unique and S()sfrte(,.1 FRecdraemrcdb

is a divisor of x n_1 An (nIc) cyclic code is On (e). Each S0W and p~x) have e GCD g(x)u1.z~e3x

(n.Ic) linear code containing a sot of q k-tuple 0 Table 7. The 5 Wz's with resulting T and 8min.
distinct code words with the following property If
an n-tuple is a code word, then the resulting n- T~: d
tuple by rotating the code word one place to the 3 min

rgtis also a code word (Lin 70]. 1+x~s 11 1 (a)

Let p(s) and g(x) denote a primitive 21xx)1,)2 1
poyoma of degree Ic and a generator poynmil z3~s)0+zs 1 0
of degree n-Ic over Galo13 Field GF7q), (4s3)1ss2) 1 5
respectively. EH3so 7TV has shown that given a
required kc message digits and a desired design
(minimum) distance d min. an autonomous LFSR can be

constructed to generate q -_1 1-tuple distinct code L.J L... .J ~ L~i I~
words by using the characteristic Polynomial
fts)zg~x)p(x). The Initial contents. S W of the Figure 2. A (6.3.4I) LSR encoder

LFSK can be preset to any nonzero code word. This The synthesis Of a Polynomial p~l) of the
theorem is nbased on an 0n.0c cyclic 'code7 with g(z) smallest degree kc for a prescribed period T was
dividing z _1 . and is applicable to an LFSR design presented In NWang 82]. Theorem 2 provides an

wit prid kq-1 o <<cb eeigsdgt encoder algorithm to derive the required g(z) basedwithperod aq 1 fo 0<<k y dletig sdigts on B03e-Chaudhuri-loequenghen (BCH) codes Pettrson
from the kc message digits. The result isa 2]. DI oe r ylccds e ea
(n-s.Ic-s) shortened cyclic code. However, It Is: not.BC coear cylcc*d . Ltbbe n

applicable to an LFSR generating an arbitrary element of G7(qm). For any specified Integer c and

Ic-s te design distance d. the code generated by g(z) is a
period. With period T not equal to q -1, th CH code, if and only if g(i) is the polynomial of
Initial contents of the LFSR have to be chosen very atesals ereoe Fq o hc
carefully to avoid producing an incorrect period. thel bala cdege vrG-2 o hc

b 0# b od-2are roots.
Definition 1: An (n~k.T) LFSR encoder is an n-

stage autonomous 133K for generating T n-tuple Theorem 2: A (2-1 .kj.) LFSR encoder with
distinct code words (or states) by the T design distance, d min at least 2t+1, where t Is
consecutive shifts of the 1333. It consists of kc ar nee, a ecnsrceuin zsgzp)
message digits and n-Ic parity check digits. as a characteristic polynomial, if the polynomial

Theorem 1: An (n,Ic.T) 1333 encoder can be pWs is Of the smallest degree kc for generating a
prescribed period 7. and the generator polynomial

constructed using f(x)ag(x)p(x) as a characteristic gXW of the code is given by
polynomial over G?(q). If the Initial contents,

3 1.of the 1331 is divisible by g(z). i.e.. gz C~ X.RW .. x> 5
3 0(x)zg(s)a(z), and both a(s) and psz have no g3z * C~ C) 3X . 2 t-1(x>

the Least Common Multiple (LCM) of mI Ws of
common factor, where g(i) is a generator polynomial dereawoem1()i a
of degree ran-c for generating an (nIc) cyclic dge i1.,...t1. weea() i

* code. p(s) Is a polynomial of the smallest degree kc primitive polynomial of degree m, its root b over
for generating a prescribed period 7, and a(x) is a mF20 ino re am1 d'()z..-.t1
polynomial of degree Ik-1 or less. ~( so re 1 n I~z(:. . t

is the minimum polynomial of b.
Proof, s (Wang 82].

Proof: See [Wang 82).
Theorem I is applicable to an (n-s,k-s.1")

1333 encoder design by deleting 3 digits from the Ik A minimuma polynomial mi1(s) of root bi over
message digits for 0<a(Ic. It implies that every Is
code word 5~ (z) of an 1333 encoder is divisi blea by GI(q ) is a polynomial of the smallest degree over

g(1), and the Greatest Common Divisor (GCD) of I7q suhta ib)OIal . Ptro 2
S Ws and p~s) is g(x). i.e., GCD(S Ws, p(i)) provides a list of minimum polynomials of rootb
00 of degree 314 or less. Since a primitive polynomial

g(x). If the GCD of 3W and p~x) is not g(s). is a minimum polynomial of root b. g(z) can thus be
0 found from Table C.2 (Peterson 72]. Table 2 lists

the 1333 will produce an incorrect period and may the required g(X)'3 of degree r for designing some
result in different minimum distance, of (2a- .Ic,T) LFSR encoders with d -in3. 5. or 7.
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The number of k message digits was obtained by Definition 2: An (n,k,T)n(2u-1,k.2k_1) cyclic

getting it to 2g-1-r. code Is an (n~k) cyclic code of period 2k_1. An

Table 2. The g(x)'s for (20-1,kT) LFSR encoders ('k.2 k-l(2m-l-sk-,2 k-n-1) shortened cylc
of dmin2

3 , 
5. or 7. code Is an (n'.k') shortened cyclic code of perlo

(2m-1.k.T) d i 2k-_1, by deleting a digita from the k messagemi-~.T ln M(%)

(7.4.5) 3 l++
3  

digita for 0(3<2U 
.  

1

(15,11.23) 3 1+
x

Ez 4[Hailao 77] hag shown that in the (n.k.2 k-1) a

(15,7.127) 5 (I+x+zq )(4+z+z2z3sz4)4 (2!-1.k.2k_1) cyclic codes, the effect of a fault

(15,5.31) 7 (1+x+x4)(1+zz24s3 )(.s.12) on the autonomous LFS feedback path is only to
(15,5.31) ' produce a noncode word which differs in the first

The above theorem 1 applicable to (n'.k'T') stage of the LFS from some valid code word. Inkc'

(2m-I-sk-s.T
'
) LFSR encoders [Nalso TT [Lin 701 Implementing an LFSR encoder by (n'.k'.2 -1) a

[Peterson 72] for 0<3<2a
' 1.  

Since f() always (2n-1-s,k-s, 2 ks-l) shortened cyclic codes for

contains a factor l+x when T 1 even. by the 0<s(211 the effect of a fault on the LFS3
property INsiao 771 (Pradhan 781 [Peterson 721 that feedback path Is proven to produce errors exactly
the minimum distance of the generated code space is at distance d -1 from some valid code word.
even if 1+x is a divisor of f(). the resulting mi

design distance of the LFSR encoder will be an even Theorem 3: In an (n'.k',2 k -1) LFSR encoder
number 2t+2, if the period T is even; and an odd design implementing a shortened cyclic code, the
number 2t+1, If 7 1 odd. In implementing an LFSR effect of a fault that makes the entire feedback
encoder with desired even minimu

m  
distance of at path assume an erroneous value Is to change the

least 2t+2 for a prescribed odd period T, the correct state (2 code word) to an erroneous state
generator polynomial should be modified an (noncode word) which Is exactly at distance dWin-l

g(x) a (I+x)*LCM<m 1 (x). 3 (x),..., 2 t- 1 (x)>. (6) from some other valid state.

Example 2: The following examples were derived from Proof: 3ee rWang 821.

Table 2 by deleting scme message digits. For Theorem 3 extends the fault detectability in
instance, the (6.3.4) was derived from the (7,4.5)
of dmin:3 by deleting one message digit. Since the [Haiso T7 to (n',k'.2 '-l) shortened cyclic codes.

period 4 is an even number, the (6,3,4) LFSR For a code of period T' not equal to 2 k-1, the
encoder will have a design distance 3+1z4. fault, making the entire feedback path assume an

erroneous state in realizing an LFSR encoder, may
Table 3. (2m-1-sk-a.T,) LFSR encoders, certainly cause a noncode word at distance more

(n'.k'.T') d m n  g(x) p(x) than I for n'u2a-1 (or at distance more than dminl1

(6.3.4) 4 1+x+x
3  l+1+12.60 for n' not equal to 2m-1) from the I

' 
states.

4 ) 23, 2 3 Fortunately. since the same g(z) can be used to
(11,3.4) 6 (1+x+x)(1.x~x2*x *x ) 31 2sxx realize both (n',k'.T') and (n.k,2 k1) LFS3
(7.3.7) 4 l+x+x

3  
encoders, and the same error detector can be

(12,3,7) 6 (1.ex)(1,x4.x4)(1.x+x2+.3,x4 3 adopted to detect errors within themselves, the
fault detectability will be the same when both

criteria are implied. Moreover. since the
FAULT DETICTABILITY generator polynomial g() in an 11S encoder of an

even period of dmins 2
t*

2 
is one degree less than

An encoder algorithm for the LFSR design with that in an LFSR encoder of an odd period of
desired period T and minimum distance dmin has been d min:2t+1 for t-error-correcting, the produced

presented. This 1SR encoder gives a Totally Self- noncode word due to a fault on the feedback path
Checking (MC) error detector the on-line fault- will be always at distance 2t, irrelevant of the
detection capebiity to detect at most drmin-m period being even or odd. This 1 summarized below:

errors on the encoder output [Wang 821. The fault Corollary 1: Suppose that the same generator
model can be any combination of faults, such as polynomial g(-T is used to implement both
stuck-at faults, bridging faults, and external p o'
isturbance-s -or noise), which manifest themselves (n'.k'.T') and (n'.k',2 -1) LSR encoders for T'

by changing at most d in-1 positions on the not equal to 2k'-1 , and both LFSR encoders use the

output of the LSR encoder. However. it is not game error detector to detect errors within
clear whether the fault that makes the entire themselves. Then the effect of the fault, which
feedback path asume an erroneous state is makes the entire feedback path assUMe an erroneous
detectable or not. For instances, an error on the state in realizing an LFS encoder of period T'.
feedback path of Figure 2 any produce 3 errors in will produce a noncode word which (1) differs in
the state, the first stage of the LSR encoder from some code
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